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LElTER TO THE EDITOR 

Exactly solvable three-level two-mode model with multiphoton 
transitions 

A S Shumovskyt, E I AliskenderovS and Fam Le KienO 
t Joint Institute for Nuclear Research, Dubna, USSR 
t. Institute of Cosmic Research, Baku, USSR 
0 Moscow State University, Moscow, USSR 

Received 22 August 1985 

Abstract. The solutions of the equations of motion for the level population and photon 
number operators are obtained. The characteristic and photon distribution functions, the 
statistical moments of photon numbers and the correlations of modes are found. 

The Jaynes-Cummings model [ l ]  of a two-level atom interacting with a quantised 
single-mode radiation field is at the core of many problems in quantum optics, NMR 

and quantum electronics. The importance of this model lies in that it is perhaps the 
simplest solvable model which describes the essential physics of radiation-matter 
interaction. Recent studies of this model by Eberly et a1 [2] and Knight and Radmore 
[3] have revealed quantum collapse and revival which clearly are a manifestation of 
the role of quantum mechanics in the coherence and fluctuation properties of radiation- 
matter systems. In a series of papers Buck and Sukumar [4-71 and Singh [8] have 
proposed three exactly solvable generations of the Jaynes-Cummings model: one 
involving intensity dependent coupling, one involving multiphoton interaction between 
the field and atom, and the third involving few-level structure of the atom. A generalised 
model describing a two-mode process in a three-level atom with one-photon transitions 
has been investigated by Li and Bei [9] and Bogolubov et a1 [lo, l la].  

The possibility of a multiphoton transition, which proceeds via intermediate states, 
has been first pointed out by Meyer [12]. Various multiphoton transition processes 
have been studied both theoretically and experimentally. Among them are two-photon 
and more general multiphoton lasers [ 13-19], two-photon decay [20,21], multiphoton 
absorption and emission in a two-level atomic system [22,23], Raman and hyper-Raman 
processes [24, 251. 

We wish to present in this letter a rigorous and fully quantum mechanical treatment 
of multiphoton two-mode processes on a three-level atom on the basis of an exactly 
solvable Jaynes-Cummings-type model. 

The three-level atomic model considered here is shown in figure 1 (for the case 
m,  = 2, m2 = 1 ) .  Let the upper level 3 be coupled with level 1 (level 2) due to the 
interaction with the field in mode 1 (mode 2) via m,-photon (m,-photon) transition. 
The model Hamiltonian of the system under consideration is 

Here H A  and H F  describe the free atom and free field respectively, and HAT; describes 
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"'I, 
Figure 1. 

the atom-field interaction in the dipole and rotating wave approximations 

H*F= h g , ( i 3 , B ~ + i , 3 a * : m - ) .  
u = l  

The operator ijj = Ij)(jl describes the population of level j .  The operator !ij = Ii)( jl 
describes the atomic transition from level j to level i ( i  Z J ) .  The operators R, = li)(j\,  
( i , j  = 1 , 2 , 3 )  obey the relations 

A A  A A A  A A 

R$kl = R i l a k j ,  [ R# R k l l  = Ri16kj -  Rkj6il ,  
( 3 )  

i i i = l .  
i = l  

The photon operators a*,, 4; describe two modes of the radiation field with the 
resonance frequencies 

m,w, = C13 - Cl,, (4) 

and g ,  are the corresponding atom-mode couplings. Note the case m, = m2 = 1 has 
been considered by Bogolubov et al [ l o ,  l la] .  In the special case when the second 
mode is excluded from consideration, i.e. when g ,  = 0, we can obtain from the Hamil- 
tonian ( 1 )  the one examined by Buck and Sukumar [S, 71 and Singh [8]. 

Starting from the Hamiltonian (1) we .write down the Heisenberg equations for 
various operators in the usual way, i.e. e^= (i/h)[H, e^] .  First of all we define for 
convenience the subsidiary operators 

( 5 )  A, = i(i3,;2 - i,3a*:m-). 

i , , ( t )  = g,A,( t ) ,  fiu(t) = m,g,A,(t). (6a, 6 )  

Nu( t )  - m,R,, ( t )  = constant = A?,, 

Then, the Heisenbey equations for the level-population operators i,, and the photon- 
number operators Nu = ;:& (a = 1,2) are quickly established 

From these equations it follows that 
A A 

(7) 
where M u ' s  are constants of motion. 
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By using the relations (3) the Heisenberg equations for A, are found to be 

where 

The operator 6 obeys the equation of motion 

A Am A + m 2 + R  ~ + m , ~ ~ 2 .  
B R ~ I u ~  ‘a2 12 1 (9) 

The equations (6u), (8) and (10) form a closed system of linear equations which has 
the following integral of motion: 

glg2~(t ) - i :R22(t ) - i :Rl l ( f )  =constant= R. ( 1 1 )  

Here the notation 

has been introduced. 

account (8) and the constant of motion ( 1  1) we get then 
Let us now differentiate each of equations (6a) with respect to time. Taking into 

ill(?) + (4i ;+i ; )RI1(  t ) + 3 i : R 2 2 ( f )  = 2i;-  R 
(13)  

i 2 2 (  f )  + (4i ;  + i ; ) k z 2 (  f )  + 3i:kll( t )  = 2i;-  k. 
One can consider these second-order differential equations as a system of equations 
for bounded quantum oscillators generating nonlinear nutations of level populations 
and photon numbers [26] in our model. 

R , , ( t )  = ;(cos i t  - 1) + p* sin i t  +i:[u*(cos 2 i t  - 1) + v* sin 2i t ]+  R,,(o) 
Rz2(t) = -;(cos if - 1) - p* sin i t  +i:[u*(cos 2 i t  - 1) + v* sin z i t ]  + R,,(o) 

The solutions of the system (13) can be easily represented in the form [lo] 

(14) 

where the operator 

i= ( i ; + i ; ) ” 2 ,  

describes the nutation frequencies. The ‘amplitude operators’ 6, ,l?, I?, v* are defined 
by the initial conditions as follows 

; = [i2(i;kIl(o) -i:d,,(o))+(i:-i;)R13/i4 
U* = [ i2( i  - 2 R 3 3 ( ~ ) ) + R ~ / 2 i 4  

p* = (i:g1A1(0) -i:g2A2(0))/i3 

v* = (g1A1(0) +g2A2(0))/2i3.  

(16) 

By using the conservation laws (3) and (7)  together with (14) we can obtain 

R 3 3 ( t ) =  - i2[u*(cos2it-1)+v*sin2it]+R,,(~) ,  

f i l ( t )  = ml{b(cos i t  - 1) + p* sin i t  + i : [~(cos  2 i t  - 1 )  + v* sin 2it11 + fiI(o),  
f i 2 ( t )  = m2{-&(cos A t  - 1) - p* sin At + i:[u*(cos 2 i t  - 1) + v* sin 2i t l )  + f i2(0) .  

(17) 
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Thus, we have found the solutions of the equations of motion for the level-population 
and photon-number operators in the Heisenberg picture. Because of that the operators 
& and hence the operators are diagonal in the space of the basis states, we 
can use the solutions (14) and (17) as conventional means of finding the time depen- 
dence of the level populations and photon numbers. By using these solutions we can 
easily find also the statistical characteristics of the photons in the system (see [ l l b ]  
and below). 

Let us introduce the following operator of the characteristic function of photon 
distribution 

and 

i ( t l ,  5 2 )  = e x ~ ( i 5 ~ A ~ ( t ) + 0 5 ~ I ? 2 ( f ) ) .  (18) 

Using the conservation laws (7) we find 

Denote by b(0) the density operator describing an initial state of the 'atom-field' 
system. Then the characteristic function i(&, t2)  is defined as 

(i(51,52)) = TrX^(S,, 5 2 M O ) .  (20) 

It is related with the photon distribution function P ( n l ,  n2; t )  by 

which allows us to obtain the latter if the former is known. 
Once the characteristic and photon distributicn functions are known, it is easy to 

find the statistical moments of photon number (Nz( t ) }  and the correlation of modes 
(I?:( t ) ,  I?:( t ) )  using the relations 

Equations (19)-(22) together with (14) allow us to discuss photon statistics for a given 
initial state of the system. A detailed consideration of this problem will be given below. 

We first assume that the atom is initially on a level i, i.e. 

b ( 0 )  = Ii)(il@pIF, (23) 

where the density matrix bF describes the initial state of the field. Then, by using (19), 
(14) and (23) the characteristic function (20) is found to be 

C i C S i ?  5 2 ) ) ~  P(n1,  n2) ex~[i5l(nl-m161,)+i52(nZ-mzs2i)I 
n1nz 

x{[exp(i51ml)- l lRl(i ,  n,, nz; f)+Cexp(i52m2)-llR2(i, n l ,  n2; f ) +  1). 
(24) 

Here P(n,, n2) is the initial distribution of photon numbers 

P(n1, n2) = b2,  nllbFIn1, n2). (25) 
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The functions R,(i, n,, n2;  t )  in (24) are determined as 

R,(i, n,, n,; t ) =  -2p(i, n,, n2)  sin2$(i, n,, n 2 ) t  

-2A:(i, n,, n2)u( i ,  n,, n2) sin2A(i, n,, n 2 ) t + 6 , ,  

R2(i, n,, n2; t )  =2p( i ,  n,, n2)  sin2iA(i, n,, n2) t  

-2A:(i, n,, n 2 ) u ( i ,  n,, n2)  sin2A(i, n,, n2)t+6, ,  

where 

L1035 

(26) 
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Note in the case i = 1, m, = m2 = 1 equations (31) reduce to the results obtained by 
Bogolubov et al [l lb].  Equation (28) for the distribution function of photon numbers 
can easily be found in other ways using either the time evolution operators in the 
Schrodinger picture or the dressed state formalism for calculating the transition prob- 
abilities of the atom. 

Thus, in this letter we have obtained the exact solution of equations of motion for 
the level population and photon number operators. The characteristic and photon 
distribution functions, the statistical moments of photon numbers and the correlations 
of modes have been found. 
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